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We propose the use of the Bubnov-Galerkin procedure to the search for self- 

oscillations. We establish the existence and the convergence of the approxi- 

mations. In the basic case we have obtained the asymptotics of the rate of 

convergence. In [l] it was shown, on the basis of the results in [ 21, how we 
can construct finite-dimensional approximations to the periodic solutions of 
autonomous systems. Below we have pointed out another approach to solving 
the approximation problem, based on the parameter functionalization method 

proposed in [3]. 

1. We first consider an autonomous system of ordinary differential equations 

dxldt = f (5) (x E R”) (1.1) 

where f is a continuously differentiable mapping of a region G c R* into R”. We 
assume that in region G system (1.1) has an isolated cycle r whose smallest positive 
period is oa. Let z,E r and let X* (t) be the solution of system (1.1) with the ini- 
tial condition ~0 at t = 0. We assume cycle I’ to be simp1e.i.e. unity is a simple 
eigenvalue of the translation operator at time oa along the trajectories of the variational 
system 
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Gldt = fx Is* (t)l E (1.2) 

Let C [O, 11 be the Banach space of functions continuous on [O, l] with values in R", 
assuming equal values at the endpoints of the interval [0, 11. By P, we denote the 

finite-dimensional projector associating with every continuous function u (rc)~G [O, I] 
having the Fourier series 

u(r)=&+ ; ( ak cos 2knr + b, sin 2knr) 
k=l 

a part 

ZL,,, (z) = a, + 5 (al, cos 2knr + b, Sin 2knz) 
k=l 

of the series. Let G, be some neighborhood of the element ua (‘G) = z-* (‘GO,,) 

(0 < T & 1) of space C [O,l]. We assume that a strictly positive functional LI (u) 
has been defined in G,, . The trigonometrical polynomials u,(r) (0 < T < 1) which 

are the solutions of the finite-dimensional algebraic system 

du,ld,c = P,,$ (u,) f (u,) (1.3) 

are called the Galerkin approximations of system (1.1). 

Theorem 1. Assume that functional 52 (u) is continuously differentiable at point 
ua and satisfies the conditions 

Q (uo) = @o, Q2, (~0) (du,lW # 0 

Then the Galerkin approximations u, exist for sufficiently large m and converge to u. ; 
moreover, the following bounds on the rate of convergence 

alI((~--P,)~olIc~[l~o--u,Ilc~~zlI(~-~m)~oIlc 

are valid for some al, a2 > 0. 
Proof. By the equality 

Hu = s (2nk)-l (- b L cos 2kn z + al, sin 2kxz) 
k=l 

we define an operator acting from the space L2 [0, II of square-summable functions 
with values in R” into the space C [0, 11. Obviously, H is completely continuous. 
Using H we now introduce a completely continuous operator acting in space C [0, I] 
(analogous to the integral operator considered earlier in [4] for nonautonomous systems) 

H (I- PO, Q w f [u(ql (u E Go) 

Let u (r) be a fixed point of operator Uo, i.e. 

The function u (r) assumes equal values at the endpoints of interval [O, 11. Further, by 
integrating identity (1.5) over the interval [O, 11, we obtain 
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Hence it foIlows that f [u (a)] = (I - P,) f [u (‘t)l. Therefore, we obtain u’ (z) - 
52 (u) f 1~ (I$] by differentiating (1.4). Thus, the fixed points of operator Un are 
singly-periodic solutions of the system 

dzz/dT = S2 (u) f tu (@I (1. ‘5) 

The converse is true also, It is not difficult to see that the system of algebraic equations 

u n = &aunu, 

is equivalent to system (1.3). Consequently, the question of Gabrkin approximations 

to system (1.1) is equivalent to the question of searching for the usual Galerkin appro- 
ximations for the equation 

u = U&s 

in the Banach space C [O,l J. 
Let us show first of all that unity is not an eigenvahte of operator (U& ( uo). To do 

this we write the equation h = (UQ), (uJ h in greater detail 

We see that h (r) is a singly-periodic solution of the system of equations 

dhidz = oofy lu, (%)I h + Q, (ZQ) h f fu, @)I 

We set ao, = t, 9 (t) = h (t/q,). Th en the function Ip (t) is an oo-periodic solution 
of the system of equations 

d%Qt = f, Is*(t)] 9 + & Q, @of w* (t) 

The latter is possible only if 

Q (u,,) h f (i* (t), cp (t)) dt = 0 
0 

Here q (t) is an @,-periodic solution of the adjoint system 

dyldt = - fu* lx* (t)l y 

We consider two possible cases. At first let 
OR 

s (8.’ (t), cp (t)) dt = 0 

0, 

Then, obvio~ly~ 

(X0* 6% cp (0)) = 0 (1.7) 

By cf, (t) we denote the fundamental matrix of the system of differential equations 
(1.2) satisfying the condition @ (0) = I. We see that 0, (a,,) z’* (0) = cc** (0) and 

‘P (0) = a* (wO) cp (0). Th ere ore, from equality (1.7) it follo_ws that the equation f 

2 = @((wo)z + z’*(o) (2 E Rn) 
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has a nontrivial solution. This contradicts the simplicity of the unit eigenvalue of the 
translation operator @ (@a). 

If S.& (us) h = 0, then,obviously. 9 (t) = kz* (t) and h (T) = ka,, (z). Then from 
the hypotheses of Theorem 1 it follows that k = 0 and, therefore, h (r) ES 0. Conse- 

quently, unity is not an eigenvalue of operator &Jo), (~0). We note, finally, that operator 
Un can be represented as Un u = Tsu 

Tu=H(1-PP,)u fSY(l)dt 
0 

Su=5U(7,d~+s(U)f[U(~~~ 

0 

moreover, 
P,T = TP,, lim II T (I- Pm) IIL,-G = 0 

m-m 

The theorem’s assertion now follows from a lemma established in [4]. The theorem is 

proved. 
We should add that the existence and the convergence of the Galerkin approximations 

can be established even when system (1.1) has a family of cycles. For example, if the 
rotation y (I - Un, G') of a completely continuous vector field 1 - Un on the 
boundary G’ of some region G is nonzero, then for sufficiently large m the Galerkin 

approximations exist and converge to the set of singly-periodic solutions of system (1.6). 

The contiguity theorem established in [S] can prove useful for computing y (I- Un,G') 

2. Let us now consider a system of differential-difference equations 

ax/at = f Ix (t - h,), . . ., 2 (t - hd 
2, f E R”, O&h,<. . . <hk 

(2.1) 

We assume that f (x1, . . ., xk) is defined and continuously differentiable in R”x 
. . . X R” and assumes values in R”. Further, let there be an isolated cycle r in system 
(2. l), which is defined by the o,-periodic solution z* (t). We take it that the system 

of variational equations 

$ = i fx.[z* (t-h,), . . . , x*(t - Ml E (2.2) 
i=l 

has a one-dimensional subspace of w,-periodic solutions. (Obviously, 5’* (t) belongs 

to this subspace). Finally, let the inequality 
00 

5 ([s’*(t) + 5 hif,$*(t - WI, ‘p(t)! dt # 0 
0 i=l 

be valid for some o,-periodic solution 9, (t) of the system adjoint to (2.2) [6]. We say 
that such cycles are quasi-simple. 

Let us show how the Galerkin procedure can be used for the approximate search for 
quasi-simple cycles. For this purpose we introduce the space C, [O,l] of functions 

n (z) continuously differentiable on [O, l] with values in R”, for which u (0) = u (I), 
U* (0) = u’ (1). The function u,, (7) = x* (stop) (0 < z & 1) belongs to C1[O,ll. 
We assume that a randomly-taken positive functional Q (u) has been defined in some 
neighborhood G,ofa point u. E C, [0, I], is continuously differentiable at point UO 
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and satisfies the conditions 

Q (&J = %, %a (%J) (duo / dr) # 0 

The trigonometrical polynomials u,which are solutions of the following algebraic 

are called the Galerkin approximations to system (2.1). 

Theorem 2. The Galerkin approximations exist for sufficiently large m and con- 

verge to uO. Furthermore, the inequalities 

a1 II v - PWJ % lb, </I uo - %?I lie, 4 a2 II (1 - Pm) uo rlcl (2.3) 

are valid for some al, a2 > 0 . 
To prove this theorem we need to examine the equation u = UQu in the space 

C, [0, 11 and to verify that : (1) unity is not an eigenvalue of the operator (U,), 

(a,); (2) P,T = TP,; (3) iii T (I - Pm) /IL,+, = 0.1t remains vague 
whether estimates of type (2.3) can be established in the space C [O, 11 for differ- 

ential-difference equations. 

The author thanks M. A, Krasnosel’skii for attention to this paper. 
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